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A process or reaction that peaks at high temperatures but not at low ones indicates competition

between synthesis and degradation. A proposed phenomenological model composed of a decay

factor superimposed on a growth term can describe both. Temperature elevation shortens the two

subprocesses’ characteristic times and increases their rates. The degradation’s characteristic time

relative to the experiment’s determines whether a peak is observed. All of the parameters determine

the peak’s height and shape as can be seen in two interactive Wolfram demonstrations on the Web.

Detailed knowledge of the underlying mechanisms is unnecessary for the model’s construction, and

uniqueness is not a prerequisite either. However, different expressions might be needed for ongoing

processes and ones initially undetectable. The model’s applicability is demonstrated with published

results on very different reactions in foods. In principle, it can be converted into a dynamic rate

equation for simulating a process’s evolution under non-isothermal conditions.
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INTRODUCTION

The kinetics of chemical reactions and biochemical or biolo-
gical processes has been primarily studied in systems in which the
reactants’ and products’ concentrations decrease or increase
monotonically. Food examples are the thermal degradation of
vitamins or the accumulation of enzymatic reaction products (1).
Certain chemical processes, however, are characterized by a
notable peak product concentration, at (relatively) high tempera-
tures but not at low. Examples are acrylamide in baked or fried
foods (2-4) and lipid oxidation monitored by the peroxide value
rise (5-8). The dynamics of such processes has been traditionally
studied by following a set of several intermediate reactions. The
simplest is when a compound B is the product of a reaction of the
general typeAfBfC, inwhich case a peak in its concentration
can be observed depending on the synthesis and degradation
reaction rates (1). In most published studies of complex processes
of this kind, it has been assumed that all of the intermediate
reactions follow first- or other fixed-order kinetics and that the
temperature dependence of their rate constants obeys the Ar-
rhenius equation (9, 10). This entails that each intermediate
reaction has a temperature-independent “energy of activation”,
unaffected by the changing chemical and/or physical environ-
ment. The merits and limitations of this approach have been
discussed elsewhere (1, 11-13). Suffice it to say here that identi-
fication andmonitoring of all the intermediate reactions and their
kinetics may require sophisticated analytical methods such as
NMR, HPLC, and calorimetry, which can become a logistic
constraint. Therefore, a mathematical model or models that

could describe and predict a process’s kinetics on the basis of
its final product’s concentration alone would have obvious
practical advantages. The above statement should not be con-
strued as a suggestion that the mechanistic approach should not
be pursued. On the contrary, insight into a process’s mechanism
and its kinetics is and will remain essential to its control by
chemical means. A discussion and examples of “peaked reac-
tions” in foods can be found in van Boekel’s comprehensive new
book on the kinetics of food systems (1). The rise and fall of blood
glucose after a meal is another example of a “peaked pro-
cess” (14, 15) and so is that of the corresponding insulin level.
A rise and fall pattern can also be observed during the adminis-
tration of antibiotics and other drugs (16), as well in the histamine
production triggered by an allergen [see, e.g., Baroody et al. (17)].
[Even microbial growth and mortality in a closed habitat can be
viewed as a peaked process, despite the fact that its “reactants”
are cells rather than molecules [see, e.g., Dougherty et al. (18)].]
The same can be said about the growth of certain tissue cultures
[see, e.g., Liu et al. (19) and Sitton and Srienc (20)].

Common to all these peaked reactions and processes is
dynamics controlled by competing mechanisms that operate
simultaneously; one promotes synthesis, generation, or growth,
the other, degradation, disintegration, or, in the case of cells,
death. A complete account of the elements involved in a complex
multistage process, and of their interactions, is frequently lacking.
Moreover, it is uncertain that exactly the same mechanisms
operate at different temperatures, as is commonly assumed.
Actually, because of the continuously varying chemical and
physical environment in foods, there is good reason to suspect
that a temperature change might affect different elements of the
process in different ways. For example, the “limiting reaction” at
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a given temperature might not be the same at a higher or lower
temperature. Theoretically, at least, as the chemical environment
is altered, interactions or pathways can be fully or partially
opened or blocked. Let us therefore dealwith the phenomenology
of peaked processes’ kinetics. The starting point is the admission
that the details are unknown or might be even unknowable. We
can say, though, that an isothermal peaked process can be
described mathematically by a global growth term on which a
decay factor has been superimposed, as shown schematically in
Figure 1. The first term, the “growth component” of the model
(left) represents a hypothetical unrestrained synthesis. It would
have taken place had there been no degradation and physical
constraints on the system. The second term, the “decay factor”
(middle), represents the total effect of the degradation mechan-
isms. The superposition of the twoproduces the actually observed
concentration curve (right). Note that the unrestrained growth or
generation curve,Cg(t), and the decay or degradation factor, fd(t),
have different temperature-dependent characteristic times (tcg1 or
tcg2 vs tcd1 or tcd2 as shown in the figure). Thus, when tcd falls
within or close to the experiment’s time, a peak concentration will
always be observed, but if tcd is well beyond the experiment’s
duration, the concentration versus time curves will appear to
be monotonically rising. The curve’s concavity direction in this
case will be determined by that of Cg(t). When a peak concentra-
tion does appear, its shape will depend on the process’s char-
acteristics, represented byCg(t) and fd(t); that is, its height, width,
and degree of symmetry will vary with temperature in a manner
dictated by the temperature dependence of these two functions’
coefficients.

Figure 1 depicts two scenarios: where the curve starts at a
nonzero initial concentration (top) and where it starts from zero
(bottom). The reason for and implications of the distinction are
discussed in the following section. The above modeling approach
has already been applied to lipid oxidation (21) and acrylamide
formation and degradation (22), albeit with slightly different
mathematical expressions. They have been replaced for the

present work to develop a dynamic rate model for simulating
non-isothermal peaked processes that is consistent with physical
considerations.

METHODS: MODEL DEVELOPMENT

Isothermal Generation and Degradation. Starting from a Finite
Initial Concentration. Consider a reaction or process whereby the initial
product’s concentration isC0>0.An example is oil oxidation startingwith
a measurable peroxide value. If the synthesis or growth process could
proceed uninterrupted, the product’s concentration would increase indefi-
nitely (which is impossible, of course, for mass balance considerations).
A convenient flexible model that can describe such unrestrained rise is the
stretched exponential expression

CgðtÞ ¼ C0 exp
t

tcg

� �m1

m1 > 0 ð1Þ

where C0 is the initial concentration in the pertinent units, tcg a character-
istic time, and m1 a power representing the curve’s steepness. [In what
follows we will only refer to chemical processes and hence use concentra-
tion terms. It is self-evident thatCg(t) andC0 can be replaced byNg(t) and
N0 when the growth of living cells is concerned.] According to this model
when t=tcg, Cg(t)=C0 exp (1)=2.718 C0, regardless of the magnitude of
m1. Also note thatm1>1 implies thatCg(t) has upper concavity andm1<1
downward concavity. m1=1 is a special case where Cg(t) rises linearly.

Exponential growth, as already mentioned, cannot be sustained indefi-
nitely, in our case because there is a finite supply of reactants. Conse-
quently, the product’s concentration must either approach an asymptotic
value or, if it is chemically degraded, its concentration at some point will
decline. The existence of degradation, which might commence while the
product’s total concentration is still rising, can be represented by a
degradation factor, fd(t). Its range if the product tends to disappear
completely will be from zero to one.

A convenient and flexible mathematical expression that can describe
such a decay factor is the stretched exponential

fdðtÞ ¼ exp½- t

tcd

� �m2

� m2 > m1 ð2Þ

Figure 1. Schematic view of the isothermal model construction: (top) for systems with a nonzero initial product concentration; (bottom) for systems with zero
initial product concentration. Note that a peak concentration is only observed when the degradation’s characteristic time constant, tcd, falls within or close to the
experiment’s duration. Also notice that a temperature rise shortens the two characteristic times and increases the steepness of the curve’s rise and fall.
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where tcd is the degradation process’s characteristic time, that is, at t=tcd,
fd(t)=1/e=0.3678 ..., and m2 is a parameter representing the decline’s
steepness.

Combining eqs 1 and 2 yields the generation/degradation model

CðtÞ ¼ CgðtÞfdðtÞ ð3Þ

or

CðtÞ ¼ C0 exp
t

tcg

� �m1

exp

"
-

t

tcd

� �m2

#
ð4Þ

Generation Reactions Starting from Zero Product Concentra-

tion. Consider a reaction having product(s) that are detectable only
beyond a certain temperature. The already mentioned acrylamide forma-
tion in foods exposed to high temperatures is a case in point. It is not
present in raw potatoes or wheat dough but can be found in French fries
and baked breads’ crust. In terms of the model, this means that the
acrylamide’s concentration at time zero is zero. Note, however, that ifC0=0
is inserted into eq 4, the result will beC(t)=0 for all times, regardless of the
other parameters’ magnitudes. To avoid this problem, we will redefine the
synthesis component of the model. For example, we can assume thatCg(t)
is a sigmoid curve described by the empirical model

CgðtÞ ¼
Casymp

t
tcg

� �m1

1þ t
tcg

� �m1
m1 > 0 ð5Þ

where Casymp is a hypothetical concentration level that would have been
reached asymptotically had the generation process/synthesis been allowed
to proceed uninterrupted, but limited by the amount of available reactants,
for example. As before, tcg is the generation process’s characteristic time,
but herewhen t=tcg,Cg(t)=Casymp/2.As before, the parameterm1 controls
the curve’s concavity direction and steepness. According to eq 5 at t=0,
Cg(t)=0 and at tf¥,Cg(t)fCasymp. The choice of tcg andm1 offers great
flexibility in setting the growth level and the time of its inception.
Combining eq 5 with the degradation factor fd(t) as defined by eq 2 yields
the model

CðtÞ ¼ Casymp

t
tcg

� �m1

1þ t
tcg

� �m1
exp

"
-

t

tcg

� �m2

#
ð6Þ

All of the previous statements about the roles of tcg, tcd,m2, andm1 are
valid here, too, with two exceptions: (i) Although eq 6 allows
(hypothetical) scenarios of unrestrained growth, that is, if tcdf ¥ and
Casympf¥, it cannot account for a pure decay curve because at t=0,C(t)=
0. (ii) Because the first (growth) term has an asymptote, the condition that
m2 must be bigger than m1 (eq 2) no longer applies.

Non-isothermal Peaking Kinetics. Most of the published works on
non-isothermal processes and reactions kinetics deal with systems that
under isothermal conditions exhibit amonotonic concentration rise or fall.
Vitamin degradation during thermal processing or storage and none-
nzymatic browning are typical examples. The issue has been how to use
isothermal concentration-time data in the derivation of a model that
could predict the decay or growth pattern under non-isothermal condi-
tions.When the reaction or process follow fixed-order kinetics and its rate
constant’s temperature dependence, the Arrhenius equation, the constant
temperature, T, in the rate version of the model has been replaced by a
varying temperature term, T(t). Once done, the dynamic concentration
curve has been calculated bynumerical integration. In cases when the “rate
constant” is a function of not only temperature but also time, this method
cannot be used. Unlike in classic kinetics, where one deals with a single
temperature-dependent rate constant, or two in the case of an Af BfC
type peaking reaction, a reaction such as lipid oxidation is characterized by
at least four temperature-dependent parameters, namely tcg[T ], m1[T ],
tcd[T ], andm2[T ], according to eq 4, and acrylamide formation by at least
five according to eq 6, ifCasymp[T ] is not constant. Also, in the absence of a
theory to derive these parameters from first principles, their temperature
dependence ought to be described by two- or three-parameter ad hoc
empirical expressions, which complicates the rate model even further.

Thus, to predict correctly a peaked process’s non-isothermal evolution,
one has to derive a four- or five-parameter expression having coefficients
that are not constants but functions of the changing temperature and
hence of time. Examples of this modeling approach in microbial inactiva-
tion and growth can be found in Peleg and Penchina (23) and Corradini
and Peleg (24) and in vitamin loss in Corradini and Peleg (25). The
underlying assumption in these works was that under dynamic conditions,
themomentary (“instantaneous”) logarithmic decay or growth rate, in our
case dlog[C(t)/C0]/dt, is the isothermal logarithmic rate at the momentary
temperature, T(t), at a time, t*, that corresponds to the momentary
concentration ratio, that is, to the system’s momentary state. The applica-
bility of the concept, which applies only to systems where C0>0, has been
confirmed by the ability of the resulting ratemodels to predict correctly the
outcome of non-isothermal heat treatments and storage conditions from
isothermal experimental data (12, 23, 24, 26). Because the validity of the
underlying assumption is not contingent on the use of any particular decay
or growth model, any expression that adequately describes the isothermal
data will do as a starting point. As demonstrated by Corradini and
Peleg, (24, 25) and others, models based on very different mathematical
expressions rendered almost indistinguishable correct predictions when
derived from the same isothermal database. However, this will be true only
if the dynamic models are not used for extrapolation. As long as the rate
model is used in the time-temperature range covered by the experimental
isothermal data, it does not have to be unique to be predictive.

In principle, the concept of converting algebraic isothermalmodels into
dynamic rate models can be extended to nonmonotonic growth and decay
patterns, which include peaked chemical reactions and biological pro-
cesses. However, before this can be done two issues ought to be addressed:
In the pertinent range, except for at the peak itself, every value of C(t) or
log C(t) has two corresponding times, not one. Therefore, t*, which is
uniquely defined for a monotonic rise or fall, can now have two values.
This problem is avoided when t* is calculated numerically at successive
time intervals starting from zero (see below). The Mathematica program
that we have used to solve the rate equation and generate the non-
isothermal C(t) curve does it automatically, provided t* is entered in the
appropriate syntax, thus eliminating the ambiguity concerning the curve’s
ascent and descent. Expressing the rate is the second issue. If we write the
rate in terms of the concentration or concentration ratio, instead of its
logarithm, the negative slope at the postpeak region can “drag” the
solution into negative territory, rendering values that have no physical
meaning. Consequently, formulating the rate equation in terms of dlog
C(t)/dt is imperative in our case to guarantee a solution that satisfies the
condition C(t) g 0 for any value of t.

Unlike in vitamin degradation or microbial inactivation and growth,
for example, published isothermal and dynamic data on the same
“peaked” system are extremely rare and might not even exist. Conse-
quently, direct validation of the model by comparing its predictions to
actual experimental data has not been an option. All we could do,
therefore, was to test the models’ internal consistency with computer
simulations. Nevertheless, the two models that we propose are both
testable in principle, that is, their validity can be confirmed or refuted
by comparing their prediction with experimental data. Note that expres-
sing the rate in a logarithmic form in themodel equation has no bearing on
its parameters’ derivation and fit. The data used for these purposes can
remain in the form of C(t) or C(t)/C0 versus time relationships and so the
model’s equations (see below).

Non-isothermal Peaking Kinetics where C0>0. Consider a
reaction/process for which the isothermal progress follows eq 4 as amodel.
Converted to a logarithmic relationship it becomes

log CðtÞ ¼ log C0þ t

tcg

� �m1

-
t

tcd

� �m2

m2 > m1 ð7Þ

The momentary logarithmic climb or descent rate at time t*, which
corresponds to the momentary concentration, is therefore

d log CðtÞ
dt

¼ m1

tcg

t�
tcg

� �m1 -1

-
m2

tcd

t�
tcd

� �m2 -1

ð8Þ

However, because eq 7 has no analytic inverse, the value of t* must
be extracted numerically. In the syntax of Mathematica, the solution of



7380 J. Agric. Food Chem., Vol. 57, No. 16, 2009 Peleg et al.

eq 7 that yields the value of t* is written in the form

tstar½t_� :

¼ t=x f first Nsolve

"
x

tcg½t�
� �m1 ½t�

-
x

tcd½t�
� �m2 ½t�

þlog½yinit�

¼¼ s½t�;x�
#

ð9Þ

[This expression says that the momentary t* at any real time t, “tstar[t]”,
gets the value of the solution of eq 7, where s[t] is log C(t) and yinit is C0.
The need for the dummy variable x arises because eq 7’s coefficients are
already functions of the real time t.]

Once defined in this way, tstar[t] is recognized by the program as a
regular function (like log[x] or exp[x], etc.), and its value will be calculated
every time the term is called for during the program’s execution. With this
definition of t*, eq 8 becomes

dLy½t_� :¼ m1½t�
tcg½t� �

tstar½t�
tcg½t�

� �m1 ½t�-1

-
m2½t�
tcd½t� �

tstar½t�
tcd½t�

� �m2 ½t�-1

ð10Þ

and its solution, “ndresult”, is obtained by executing

ndresult ¼ NDSolve½fs½t� ¼¼ dLy½t�;s½0� ¼
¼ log½yinit�g;s½t�;½t;0;tcycle�g ð11Þ

where tcycle is the experiment’s duration.
In our case, Mathematica’s NDSolve[ ] tries to find a function s(t)

having a time derivative (the logarithmic curve’s momentary slope) s0[t] of
dLy[t] as defined by eq 10, that is, where tstar[t] is calculated anew at every
iteration. The boundary condition in this case is that at t=0, s[0]=log C0,
yinit in the Mathematica version of the equation. Because ndresult is not
an analytic function, Mathematica returns the solution as an “Interpola-
tion Function”, which is a dense set of numerical values, in our case
between zero and tcycle. Once s[t] is found in this way, it can be converted
into a concentration versus time relationship by the substitution

C½t� ¼ C0 exp½ndresult½½1, 1, 2�� ð12Þ
Having done that, C[t] can be generated and plotted with any C0 value

and chosen m1[t], tcg[t], m2[t], and tcd[t] (see below). Despite the cumber-
some appearance of the procedure, it is rather simple to those familiar with
Mathematica and its syntax. Moreover, once the program has been
written, one can define the temperature dependence of the model’s
coefficients, that is, m1[T], tcg[T], m2[T], and tcd[T], in terms of algebraic
expressions. Thus, for any given temperature history,T(t), the correspond-
ing rate equation’s coefficients are redefined as the nested terms m1[t]=
m1[T(t)], tcg[t]=tcg[T(t)],m2[t]=m2[T(t)], and tcd[t]=tcd[T(t)]. These terms,
in turn, can be inserted into the rate model’s equation, eq 10, the
substituted solution of which (eq 12) is the sought concentration versus
time curve for the particular temperature history, T(t).

Non-isothermal Peaking Kinetics where C0=0. Consider a
reactionwith isothermal evolution following eq 6 as amodel, that is, where
the product’s initial concentration is zero. The logarithmic rate equation in
this case is

log CðtÞ ¼ log Casymp þ log

" t
tcg

� �m1

1þ t
tcg

� �m1

#
þ t

tcd

� �m2

ð13Þ

and its rate version is

d log CðtÞ
dt

¼
m1 -m2

t�
tcd

� �m2

"
1þ t�

tcg

� �m1

#

t�
"
1þ t�

tcg

� �m1

# ð14Þ

where t* is the numerical solution of eq 13 for t (expressed in a manner
similar to that of eq 9).

The final differential equation, the equivalent of eq 10, written in the
syntax of Mathematica is

dLy½t_� :¼
m1½t�-m2½t� tstar½t�

tcd½t�
� �m2 ½t�

"
1þ tstar½t�

tcg½t�
� �m1 ½t�

#

tstar½t�
"
1þ tstar½t�

tcg ½t�
� �m1 ½t�

# ð15Þ

However, because the concentration curve starts at zero and log[0]=-¥,
the initial zero concentration cannot be entered as boundary condition.

Figure 2. Demonstration of the fit of eq 4 to published peaking concentra-
tion data. The experimental results are from Calligaris et al. (5) (sunflower
oil) and Jiang et al. (27) (caramelization, 205 �C).

Figure 3. Demonstration of the fit of eq 6 to published peaking concentra-
tion data. The experimental results are from Cook and Taylor (2)
(acrylamide), Jiang et al. (27) (caramelization, 180 �C), Quintas et al. (28)
(caramelization, 120 �C), and Sathivel et al. (8) (pollock oil oxidation).
The fit parameters of acrylamide are listed in Table 1.

Table 1. Acrylamide Formation and Degradation,Regression Parameters of
Equation 6 as a Modela

temp (�C) Casymp(mg/kg) tcg (min) m1 tcd(min) m2 MSE

160 0.35 22.5 5.9 645 0.73 0.0003

180 2.0 17.7 7.3 26.8 0.82 0.0003

200 4.8 13.1 10.6 13.3 0.95 0.0004

a The original data are fromCook and Taylor (2). The corresponding plot is shown
in Figure 3.
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The same is true for the curve’s tail end where entering an arbitrary very
small concentration value for an arbitrary very long time is also not an
option. To eliminate the boundary condition problem and come up with a
finite value that Mathematica can use, we have to take a detour. Had the
synthesis been unimpeded, the isothermal concentration curve would have
followed eq 5, which after logarithmic transformation would be written as

log CðtÞ ¼ log Casymp þ log

" t
tcg

� �m1

1þ t
tcg

� �m1

#
ð16Þ

For non-isothermal conditions, we could derive the logarithmic rate
equation in the same manner as before, that is, by assuming that the
momentary logarithmic ascent rate is the isothermal logarithmic rate at the
momentary temperature, at a time t* that corresponds to the momentary
concentration. In this case, however, the model’s equation (eq 5) not only
describes a monotonic relationship but it also has an analytic inverse.
Consequently, t* can be extracted and expressed algebraically, that is

t�ðtÞ ¼ tcg

(
exp½log CgðtÞ-log Casymp�

1-exp½log CgðtÞ-log Casymp�

)1=m1ðtÞ
ð17Þ

Figure 4. Temperature dependence of the generation and degradation parameters of acrylamide, Casymp[T],m1[T], tcg[T],m2[T], and tcd[T] described by ad
hoc empirical expressions. The parameters’ values were calculated by nonlinear regression from the data shown inFigure3 (top left)with eq 6 as amodel. The
original experimental results are from Cook and Taylor (2).

Figure 5. Simulated isothermal peaking concentration curves produced
with eq 4 as a model. Note the effect of the generation and degradation
parameters on the curves’ shape.

Figure 6. Simulated isothermal peaking concentration curves produced
with eq 6 as a model. Note the effect of the generation and degradation
parameters on the curves’ shape.
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The non-isothermal differential rate equation of this scenario will
therefore be

d log CgðtÞ
dt

¼ m1ðtÞ

t�ðtÞ þ t�ðtÞ
"

t�ðtÞ
tcgðtÞ

#m1ðtÞ ð18Þ

where t*(t) is defined by eq 17.
Once written in the syntax of Mathematica, eq 18 can be solved

numerically by the program. Its coefficients are the hypothetical Casymp,
m1(t)=m1[T(t)], and tcg(t)= tcg[T(t)], T(t) being the time-temperature
relationship or temperature history. The solution of eq 18 is the curveCg(t)
that corresponds to the specified T(t).

Let us now return to the original concentration curve and its descrip-

tion by eq 15. Both curves C(t) and Cg(t) start at zero but later assume

very different shapes. However, because at t, tcd, fd(t) ∼ 1, the two

curves almost perfectly overlap initially. In other words, unless the

two curves diverge very early, any calculated value of Cg(t) at the initial

part of the curve will be a close estimate of C(t) at this region and

could be used as a boundary condition for the solution of eq 18. Tobe sure,

the solution will not be exact, but it will be very close, so close that

curves generated with different values of Cg(t) obtained for different

times are practically indistinguishable (see below). Once a boundary

condition has been so calculated in this manner, eq 15 can be solved for

a variety of temperature histories and the resulting concentration curves

examined.

RESULTS AND DISCUSSION

Isothermal Generation and Degradation. The new models’ fit
has been tested using published results on acrylamide, lipid
oxidation, and caramelization reactions. The original data and
the fitted concentration curves are shown in Figures 2 and 3. The
resulting parameters of the acrylamide (which had the lower
scatter) are summarized in Table 1. The temperature dependence
of the generation anddegradation parameters can bedescribed by
and plotted with ad hoc empirical expressions, as demonstrated
with the acrylamide data inFigure 4. Data of this kind can be used
for quantitative comparison of different synthesis/decay patterns
as demonstrated in Table 1. They can also be used to identify the
temperature level at which the peak concentration will appear, or
disappear, and to estimate its height and span at various tem-
peratures, graphically or by calculation.

Simulated generation/degradation curves produced by eq 4 as
a model are presented in Figure 5. Note that for a peak to appear,
m2 must be larger thanm1. Also, at t=0, C(t)=C0 and as tf ¥,
C(t) f 0. The time derivative of eq 4 is a cumbersome algebraic
expression with no analytical solution for t > 0. The peak’s
location and height, however, can be easily found by using the
“FindMax” command of Mathematica (Wolfram Research,
Champaign, IL), the program used in this work, or by other
numerical methods using alternative software. Equation 4 allows
for a scenariowhereby tcd, tcg, inwhich caseC(t) will be a typical
exponential decay curve as shown in Figure 5 (bottom right).
Thus, according to the model, monotonic concentration fall,

Figure 7. Simulated non-isothermal peaking concentration curves for three temperature histories produced with eq 10 as a model. Note that the rate
equation’s complexity does not hinder its numerical solution by a program such as Mathematica.
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exponential or logistic, is just a special case of the same kinetics, at
least qualitatively.

The model suggests that a smooth transition from predominant
synthesis to degradation, or vice versa, is the manifestation of a
continuous shift in the characteristic time scales of the underlying
processes. The shift can be due solely to the acceleration or
retardation of existing reactions, but it can also be caused, at least
partly, by extinction of certain reactions and the initiation of new
ones. The actual cause can only be determined experimentally by
monitoring the intermediate reactions at different temperatures.

Simulated concentration-time relationships produced by eq 6
as a model are shown in Figure 6. As could be expected, the
peaked curves are similar in appearance to those produced by eq
4, except that they start at zero product concentration. Here too,
as shown, one can generate concentration curves with or without
a lag time by adjusting the model parameters.

Non-isothermal Generation and Degradation. Examples of a
system’s dynamic response to different hypothetical temperature
histories are given in Figure 7. They show peaking kinetics where
C0>0. The C(t) plots at the bottom were all produced by the

Figure 8. Demonstration of the non-isothermal Cg(t) curve construction with eq 18 as a model to obtain a boundary condition for the solution of eq 14.

Figure 9. Simulated non-isothermal peaking concentration curves for three temperature histories produced with eq 14 as a model. Note that the rate
equation’s complexity does not hinder its numerical solution by a program such as Mathematica. Also note that the boundary conditions for the rate equation
solution were obtained according to the procedure shown schematically in Figure 8 and explained in the text.



7384 J. Agric. Food Chem., Vol. 57, No. 16, 2009 Peleg et al.

described model (eq 10) and procedure. They demonstrate that
the mathematical complexity of the rate model’s equation, in
which all of the coefficients are functions of time, is not a
hindrance to its solution by Mathematica. (The solutions were
rendered in less than a minute by a computer with a fairly slow
processor by today’s standards.) Therefore, simulations of the
kind shown can be used to examine a variety of scenarios within a
very short time.

A similar procedure was used to obtain the dynamic response
to the same temperature histories for peaking kinetics when C0=
0, using eq 14 as the basic model. In this case, however, the
boundary condition was first calculated by the method described
in the previous section and shown schematically in Figure 8. Only
then could the rate equation itself be solved to generate the
concentration curves shown in Figure 9.

Testing the Model’s Internal Consistency. The model’s consis-
tency and the program’s performance were first tested by repro-
ducing known isothermal curves with the non-isothermal version
of each model. The isothermal curves were generated with eq 4
and the non-isothermal ones with eqs 7-12. Suppose that for a
particular set of m1[T ], tcg[T ], m2[T ], and tcd[T ] we choose the
temperature 30 �C for the isothermal case and insert the corre-
sponding values into eq 4 to produce the concentration curve.We
now use the dynamic model for the temperature profile T(t)=30
þ 10-8 log(t), say, or 30-10-10t0.3. For all practical purposes
such “non-isothermal” temperature profiles are identical to the
isothermal case when T=30 �C. Therefore, if the non-isothermal
model is correct and the calculation method works properly, the
curves produced by the two versions of the model should look
identical. As demonstrated in Figure 10 (left) this indeed has been
the case. Also, according to the model formulation and its
underlying assumption, the mathematical expression that de-
scribes the temperature history, T(t), is unimportant, as long as
it describes the history adequately. Consequently, if two very
different algebraic expressions describe the same temperature
profile over the pertinent range, they could be used interchange-
ably and the resulting concentration curves would be practically

indistinguishable. Two examples of this test of the model are
given in Figure 10 (middle and right). The shown concentration
curves were produced for what is practically the same tempera-
ture profile, except that it was described by a two-parameter
exponential term (gray line) and a fourth-degree polynomial
(dashed line). As expected, the corresponding concentration
curves were also practically identical, and the same has been
observed in other simulations of this kind. These included
simulations based on eqs 6 and 13-18 as the rate model, that
is, for C0=0, examples of which are given in Figure 11.

All of the above demonstrates that peaking processes can be
described by phenomenological models that do not require a
priori knowledge of the underlying mechanisms and their ki-
netics. We repeat that the proposed models are not intended to
replace mechanistic ones, only to complement them. The phe-
nomenological models’ main advantage is that they can identify
the temperature range in which a peak concentration appears or
disappears, on the basis of monitoring the final product’s con-
centration alone, a technically simple task in most cases. They
also eliminate the need to make assumptions, such as the
constancy of the activation energy, which are hard to verify.
Because a phenomenologicalmodel need not be unique, its choice
should be primarily guided by mathematical convenience, the
parsimony principle (Occam’s razor), and if possible the intuitive
meaning of its parameters. Some models, such as the ones
discussed in this work, are easier to convert into internally
consistent rate equations and can account for the qualitative
difference between an ongoing reaction and one starting from a
zero initial product concentration (“de novo” synthesis). Future
researchwill showwhether the presented dynamic ratemodels are
indeed predictive. Until then, one would be able to use them only
to generate hypothetical concentration curves under a variety
of temperature histories and examine the potential consequences.
As to the isothermal versions of the models, they can already be
used to describe experimental data, generate realistic scenarios,
and quantify their implications. Two interactive programs to do
that are now part of the Wolfram Demonstrations Project’s

Figure 10. Demonstration of the internal consistency of eq 10 as a rate model. The solid gray and dashed black curves were generated with the temperature
profile being described by different algebraic expressions.
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collection. These demonstrations are posted as freeware and can
be watched and downloaded at http://demonstrations.wolfram.
com/DeNovoGrowthProcessesWithCompetingMechanisms/ and
http://demonstrations.wolfram.com/IncipientGrowthProcessesWith
CompetingMechanisms/. All the user has to do is set or adjust the
model’s parameters by moving sliders on the screen and the
correspondingCg(t), fd(t), andC(t) versus time curves will appear
instantaneously.
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